スキップしてメイン コンテンツに移動

1906.07 Chainer NNモデルの中間層でデータを分岐・結合する方法

1906.07 Chainer NNモデルの中間層でデータを分岐・結合

chainer.functionsの「reshape」と「concat」を用いて結合できる模様。
In [1]:
# sec: lib

import numpy as np

import chainer
import chainer.links as L
import chainer.functions as F

# sec: ver

chainer.print_runtime_info()
Platform: Windows-7-6.1.7601-SP1
Chainer: 5.3.0
NumPy: 1.16.2
CuPy: Not Available
iDeep: Not Available

NNモデルを定義

In [61]:
# sec: NNモデルの定義

class MyConvNet(chainer.Chain):

    def __init__(self):
        super(MyConvNet, self).__init__()

        # パラメータを持つ層の登録
        with self.init_scope():
            self.c1 = L.Convolution2D(None, 10, ksize=3, stride=2, pad=0)
            self.c2 = L.Convolution2D(None, 10, ksize=5, stride=2, pad=0)
            self.l1 = L.Linear(None, 100)
            self.l2 = L.Linear(None, 100)
            self.l3 = L.Linear(None, 40)

    def forward(self, x):
        # データを受け取った際のforward計算を書く
        
        # sec: conv
        
        print("x", x.shape, np.prod(x.shape[1:]))
        h1 = F.relu(self.c1(x))
        print("conv1", h1.shape, np.prod(h1.shape[1:]))
        h2 = F.relu(self.c2(x))
        print("conv2", h2.shape, np.prod(h2.shape[1:]))
        
        # sec: concat
        
        h1 = F.reshape(h1, (h1.shape[0], -1))
        print("reshape1", h1.shape)
        h2 = F.reshape(h2, (h2.shape[0], -1))
        print("reshape2", h2.shape)
        h = F.concat([h1, h2], axis=1)
        print("concat12", h.shape)
        
        # sec: fc
        
        h = F.relu(self.l1(h))
        print("fc1", h.shape)
        h = F.relu(self.l2(h))
        print("fc2", h.shape)
        h = self.l3(h)
        print("fc3", h.shape)
        return h

NNモデルをチェック

In [62]:
n_batch = 128
n_ch = 3
n_height = 20
n_width = 120

# sec: NNモデルの出力値を計算

model = MyConvNet()

x = np.zeros((n_batch, n_ch, n_height, n_width), dtype="float32")
y = model(x)
print("y", y.shape)
x (128, 3, 20, 120) 7200
conv1 (128, 10, 9, 59) 5310
conv2 (128, 10, 8, 58) 4640
reshape1 (128, 5310)
reshape2 (128, 4640)
concat12 (128, 9950)
fc1 (128, 100)
fc2 (128, 100)
fc3 (128, 40)
y (128, 40)
In [63]:
# sec: 勾配を計算

loss = F.softmax_cross_entropy(y, np.zeros(n_batch, dtype="int32"))
print(loss)

model.cleargrads()
loss.backward()
variable(3.68888)

コメント

このブログの人気の投稿

1906.09 ChainerのNNモデルの定義でビギナーが陥りやすいエラー 4例

1906.09 ChainerのNNモデルの定義でビギナーが陥りやすいエラー 4例 Chainerを始めて、エラーが起こると、そのエラーの説明表示を見ても、よく分からないことが多い。ここでは、問題形式で、ビギナーが陥りやすいエラーを4例、挙げてみました。 例1 例えば、以下のコードを実行すると「Expect: in_types[2].dtype == in_types[0].dtype」「Actual: float32 != float64」のエラーが発生する。何がいけないのか? In [1]: # sec: lib import numpy as np import chainer import chainer.links as L import chainer.functions as F # sec: ver chainer . print_runtime_info () Platform: Windows-7-6.1.7601-SP1 Chainer: 5.3.0 NumPy: 1.16.2 CuPy: Not Available iDeep: Not Available NNモデルを定義 In [2]: class MyConvNet ( chainer . Chain ): def __init__ ( self ): super ( MyConvNet , self ) . __init__ () # パラメータを持つ層の登録 with self . init_scope (): self . c1 = L . Convolution2D ( None , 20 , ksize = 3 , stride = 2 , pad = 0 ) self . c2 = L . Convolution2D ( None , 40 , ksize = 3 , stride = 2 , pad = 0 ) self . l1 ...

Jupyter Notebook (.ipynb)の綺麗な見た目のまま内容をブログで公開する方法

検索 Webを探してみても、意外と、Jupyter Notebook (.ipynb)の内容を、簡単で綺麗に表示できる方法が見当たらない。 https://minus9d.hatenablog.com/entry/2018/03/17/153537 Github  Githubのレポジトリに登録された.ipynbファイルは自動的に整形されて閲覧できます。 Gist  .ipynbファイルのテキストを全文コピーしてGistに貼り付け Binder (beta) Herokuの無料枠を使ってJupyterサーバを立てる nbconvertコマンドを使ってHTMLやMarkdownに変換し加工 別サイトのサービスを利用しなくてはならないと、記事を書く度に毎回、アップロード操作しなくてはならない。 どれも面倒。 そこで 記事の原稿はローカルPCに残る 投稿操作は1回きりで楽 HTMLをそのまま貼り付けたい を満たすような方法を模索すると、以下の方法で、おおよそ 簡単にJupyter Notebookの内容をそのままブログに載せられる ことが分かった。 方法 ブログ記事の作成・編集、コードの実行・試行錯誤は、すべてローカルのPCのJupyter Notebook(.ipynb)上で作る。  ↓ Jupyter Notebookのメニュー→File→ Print Preview でプレビューを表示。 プレビューページ が表示される。  ↓ プレビューページの一部・全てを選択して、 コピー 。  ↓ ブログ(Bloggerを使用)サイトで新規記事を作成して、 ペースト 。 プレビュー表示のHTMLが、そのまま維持・貼り付けされる。  ↓ ブログを投稿。 利点 この方法であれば、かなり書きやすい。 ローカルのPCに原稿の 文章データ(.ipynb)はすべて残り 、安心。 ブログに投稿しても、見た目がほとんど同じ、 綺麗な見た目のまま を維持可。 ブログへの投稿は、 コピー&ペーストだけ でOK、非常に楽。 グラフ画像も、コピー&ペーストで同様に一括で貼り付け られて投稿されるので、楽。 ブログ記事の修正投稿は、ローカル...

98%精度のNNモデルが間違える画像(MNIST)とは?

「28x28数字画像入力→L.Linear(100ノード)→L.Linear(100ノード)→L.Linear(10ノード)→10出力クラス」の形のNNモデルを、MNISTデータで98%精度まで学習させた予測器を使用して、MNIST画像データの中を少し深く掘り下げて見てみる。 記事: Chainer初試行⇒成功 のNNモデル・結果を利用。 NNモデルのロード In [1]: import chainer import chainer.links as L import chainer.functions as F class MLP ( chainer . Chain ): def __init__ ( self , n_mid_units = 100 , n_out = 10 ): super ( MLP , self ) . __init__ () # パラメータを持つ層の登録 with self . init_scope (): self . l1 = L . Linear ( None , n_mid_units ) self . l2 = L . Linear ( n_mid_units , n_mid_units ) self . l3 = L . Linear ( n_mid_units , n_out ) def forward ( self , x ): # データを受け取った際のforward計算を書く h1 = F . relu ( self . l1 ( x )) h2 = F . relu ( self . l2 ( h1 )) return self . l3 ( h2 ) In [2]: from chainer import serializers my_net = MLP () serializers . load_npz ( 'my_mnis...

Chainerをインストール⇒成功 (ローカルPCのJupyter Notebook上、pipを利用)

ローカルPCで稼働するJupyter NotebookのPythonにChainerをインストール。 Jupyter Notebookは、WinPython 32bit 3.5.2.3 Qt5をインストールして、導入。 1行「!pip install chainer」を実行するだけ でOK、非常に簡単。 In [3]: ! pip install chainer Collecting chainer Downloading https://files.pythonhosted.org/packages/6d/a1/8e9110a60e045341e36910568cd53f54a791fff6844448a46331f597177f/chainer-5.2.0.tar.gz (513kB) Collecting filelock (from chainer) Downloading https://files.pythonhosted.org/packages/d7/ca/3c74396a9ed8a4cfab5459800edeef9a1269591cb21f5a49bd71a49c5fa2/filelock-3.0.10-py3-none-any.whl Requirement already satisfied: numpy>=1.9.0 in c:\users\sample\winpython-32bit-3.5.2.3qt5\python-3.5.2\lib\site-packages (from chainer) (1.11.2+mkl) Collecting protobuf>=3.0.0 (from chainer) Downloading https://files.pythonhosted.org/packages/20/b7/fd638c741e9a75da0ff955b50cf42ddb71042575e5ba14d6ffd269e37a24/protobuf-3.6.1-cp35-cp35m-win32.whl (935kB) Requirement already satisfied: six>=1.9.0 in c:\users\sampl...

Chainer初試行⇒成功 (ローカルPCのJupyter Notebook上、CPUでの実行、MNIST)

「4.2. Chainerの基本的な使い方」を実際に実行してみる。 https://japan-medical-ai.github.io/medical-ai-course-materials/notebooks/Introduction_to_Chainer.html#Chainer%E3%81%AE%E5%9F%BA%E6%9C%AC%E7%9A%84%E3%81%AA%E4%BD%BF%E3%81%84%E6%96%B9 インストール直後の初回試行時は、net(x)の評価の行でエラーとなっていたが、 Jupyter Notebook再起動、PC再起動 などを実施した後に、エラーが無くなる。 In [5]: from chainer.datasets import mnist # データセットがダウンロード済みでなければ,ダウンロードも行う train_val , test = mnist . get_mnist ( withlabel = True , ndim = 1 ) Downloading from http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz... Downloading from http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz... Downloading from http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz... Downloading from http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz... In [46]: import matplotlib.pyplot as plt plt . imshow ( train_val [ 0 ][ 0 ] . reshape ( 28 , 28 ), cmap = 'gray' , interpolation = "none" ) plt . show ...

NNモデルの評価値をもう一度計算⇒成功 (必要部分だけ抜粋したコードをもう一度書く)

抜粋したコードで評価 Iterator⇒成功 In [56]: my_net = MLP () serializers . load_npz ( 'my_mnist.model' , my_net ) In [57]: train_iter = iterators . SerialIterator ( train_val , batchsize ) x , t = concat_examples ( train_iter . next (), gpu_id ) with chainer . using_config ( 'train' , False ), chainer . using_config ( 'enable_backprop' , False ): y = net ( x ) accuracy = F . accuracy ( y , t ) print ( accuracy . array ) 0.984375 抜粋したコードで評価 画像1枚⇒成功 In [59]: x , t = test [ random . randint ( 0 , len ( test ))] x = infer_net . xp . asarray ( x [ None , ... ]) with chainer . using_config ( 'train' , False ), chainer . using_config ( 'enable_backprop' , False ): y = infer_net ( x ) y = y . array print ( y ) print ( y . argmax ( axis = 1 )[ 0 ], t ) [[ -0.13074946 -3.27831101 14.03434944 4.3200264 -9.22432804 -6.01922178 ...